

Synthetic Data Generation and Evaluation

SERENE-RISC Workshop October 22, 2020

Duc Phong Le

Canadian Institute for Cybersecurity (CIC)

Roadmap

- Problem statement
- Methods for synthesizing data
 - Challenges in Synthetic Data Generation
 - Process of Synthetic Data Generation
 - Approaches
- Evaluation of Synthetic Data
 - Utility Assessment
 - Privacy Assessment

Problem Statement

- Data is getting more and more important
 - Analyzing data for making business decisions
 - Using data to train and validate machine learning models
 - Sharing data between clients to organizations, organization to organization, etc.
- Sensitive data & Data privacy
 - <u>Sensitive data</u>: data wherever it's loss could cause damage or distress to people/devices
 - <u>Data Privacy</u> is the necessity to preserve and protect any sensitive data, collected by any organization, from being accessed by a third party
- <u>One solution</u> that can provide data privacy is **synthetic data**

Generation Methods

CIC

Challenges in Synthetic Data Generation

• Providing data utility

- Have the same statistical properties, e.g., distribution, correlation, structure
- All queries to the synthetic data would lead to the same result as to the original data
- Providing the data privacy
 - Anonymity based on regulatory standards, e.g., GDPR requirements
 - <u>Singling out</u>: possibility to identify an individual
 - <u>Linkability</u>: ability to link two record concerning the same data subject
 - <u>Inference</u>: capability of deducing one attribute value from other attribute values
 - **Differential privacy**: a theoretical privacy requirement

Process of Synthetic Data Generation

Synthetic Data Generation Approaches

 \bigcirc

- Synthetic data generation has been researched for nearly three decades
 - The first data synthesizer was introduced in 1993 by Rubin in the context of Statistical Disclosure Limitation (SDL) [1]
 - <u>Three categories</u>: Fully / Partially / Hybrid synthetic data
- Three main approaches:
 - Imputation-based methods
 - Full joint probability distribution methods
 - Generative Adversarial Networks (GAN)-based methods

[1] Rubin D. B. Statistical disclosure limitation. Journal of Official Statistic, 1993.

Imputation-based Methods

- Imputation was initially introduced in statistics as a technique to fill in missing data with substituted values in 1986
 - Given X and Y_obs, synthetically generate Y_nobs
- Proposed as a fully synthetic data generator by Rubin in 1993
 - Treating sensitive data as missing data
 - Releasing randomly sampled imputed values

Sample *m* datasets from imputed population and release them publicly

 Randomness in the dataset due to sampling from population and imputed values

DOB, Marital Status, Gender, *Income* \rightarrow Census dataset DOB, Marital Status, Gender, *HIVStatus* \rightarrow Health dataset

Full probability joint distribution methods

- Imputation-based methods may not preserve the correlation between attributes
- Full probability joint distribution methods learn and build a model about:
 - Marginal distributions
 - Joint distributions
 - Correlations between variables.
- For example, using Bayesian networks:
 - A probabilistic graphical model representing a set of variables and their conditional dependencies via a directed acyclic graph (DAG)

• For example, the relationship between education and income, age and health, etc

Generative Adversarial Networks (GAN)

- GAN (Generative Adversarial Networks):
 - a popular class of Deep Neural Networks (DNN)
 - produces two joint-trained networks Generator and Discriminator
 - <u>Generator</u>: generates synthetic data intended to be similar to the training data
 - Discriminator: tries to discriminate the synthetic data
 from the true training data
 - These two networks contest in a game often in the form of **zero-sum** game

Real

Testing Criteria for Synthetic Data

<u>Goal</u>

Evaluate the Utility and Privacy of Synthetic Data

Two approaches

- Statistical Measurements
 - Evaluate the similarity between two datasets through statistical information

> Al-based Measurements

 Using ML algorithm to train/test real and synthetic data then measure/compare similarity metrics

Utility Assessments

- Univariate Distributions
 - Basic Stats such as mean, median, histograms, etc
- Joint-distributions
 - Compare joint-distributions of variables in real data and synthetic data
- Correlation between variables
 - Compare correlation matrices of the real data and synthetic data
- Machine learning score similarity
 - For ex: accuracy, F-1 score for classification and MRE (mean relative error) for regression tests

Privacy Assessments

- Differential Privacy (DP): theoretical privacy requirements
 - Common methods to realize DP include Laplace, Gaussian, Exponential and Global sensitivity mechanisms
- Requirements from Privacy Acts:
 - For example: Singling out, Linkability, Inference
 - <u>Possible measurements</u>: Hitting rate, Record linkage, and Distance to the Closest Records (DCR)

Q & A

Thank you for your attention...