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Problem Statement
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« Datais getting more and more important
* Analyzing data for making business decisions
* Using data to train and validate machine learning models
« Sharing data between clients to organizations, organization to organization, etc.

« Sensitivedata& Data privacy

« Sensitive data: data wherever it's loss could cause damage or distress to
people/devices

« Data Privacy is the necessity to preserve and protect any sensitive data, collected
by any organization, from being accessed by a third party

« One solution that can provide data privacy is synthetic data
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Challenges in Synthetic Data Generation @
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* Providing data utility

« Have the same statistical properties, e.g., distribution, correlation, structure

« Al queries to the synthetic data would lead to the same result as to the original data

 Providingthe dataprivacy

« Anonymity based on regulatory standards, e.g., GDPR requirements

« Singling out: possibility to identify an individual

« Linkability: ability to link two record concerning the same data subject

« Inference: capability of deducing one attribute value from other attribute values

« Differential privacy: a theoretical privacy requirement
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Process of Synthetic Data Generation O,
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Synthetic Data Generation Approaches
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« Synthetic data generation has been researched for nearly three
decades

* The first data synthesizer was introduced in 1993 by Rubin in the context of
Statistical Disclosure Limitation (SDL) [1]

« Three cateqgories: Fully / Partially / Hybrid synthetic data

« Three main approaches:

* Imputation-based methods
* Full joint probability distribution methods

* Generative Adversarial Networks (GAN)-based methods

[1] Rubin D. B. Statistical disclosure limitation. Journal of Official Statistic, 1993.
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Imputation-based Methods
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« Imputation was initially introduced in statistics as a technique to fill in missing data
with substituted values in 1986

« Given Xand Y_obs, synthetically generate Y_nobs
 Proposed as a fully synthetic data generator by Rubin in 1993
«  Treating sensitive data as missing data

* Releasing randomly sampled imputed values

T Sample m datasets from imputed
y Synthetc population and release them publicly
obs Sample 1
X x| v « Randomnessinthe dataset due to
Syinele sampling from population and imputed
Y s j values
h_"/ L "S m: DOB, Marital Status, Gender, Income  — Census dataset
ntifyin nsiti nthetic
A Sample m pOB, Marital Status, Gendeg, HIVStatus — Health dataset

~
ldentifying features
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Full probability joint distribution methods
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« Imputation-based methods may not preserve the correlation between attributes

«  Full probability joint distribution methods learn and build a model about:
*  Marginal distributions

. Joint distributions

. Correlations between variables.

 For example, using Bayesian networks:

« A probabilistic graphical model representing a

set of variables and their conditional
dependencies via a directed acyclic graph (DAG)

«  Forexample, the relationship between education and income, age and health, etc

Copyright © 2018 Canadian Institute for Cybersecurity



Generative Adversarial Networks (GAN)

* GAN (Generative Adversarial Networks):
« apopular class of Deep Neural Networks (DNN)
«  produces two joint-trained networks Generator
and Discriminator
«  Generator: generates synthetic data intended to be
similar to the training data

« Discriminator: tries to discriminate the synthetic data

from the true training data
Thesetwo networks contestin a game oftenin the

form of zero-sum game
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Testing Criteria for Synthetic Data @
Goal

> Evaluatethe Utility and Privacy of Synthetic Data

Two approaches

> Statistical Measurements
« Evaluate the similarity between two datasets through statistical information
> Al-based Measurements

« Using ML algorithm to train/test real and synthetic data then measure/compare
similarity metrics metrics
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Utility Assessments ()
* Univariate Distributions

« Basic Stats such as mean, median, histograms, etc

Dataset
[ Realdata
50 M Synthetic data
« Joint-distributions

« Compare joint-distributions of variables in real data
and synthetic data

Frequency

<=50
51-60
71-80
81-90

kD

Agegroup

 Correlation between variables

«  Compare correlation matrices of the real data and synthetic data

* Machine learning score similarity

Forex: accuracy, F-1 score for classificationand MRE (mean relative error) for regressiontests
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Privacy Assessments

@
po
@)

« Differential Privacy (DP): theoretical privacy requirements

« Common methods to realize DP include Laplace, Gaussian,
Exponential and Global sensitivity mechanisms

 Requirements from Privacy Acts:

* For example: Singling out, Linkability, Inference

 Possible measurements: Hitting rate, Record linkage, and Distance to
the Closest Records (DCR)
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