Algebraic Differential Fault Attacks on SIMON Lightweight Block Ciphers

Le Duc Phong

Canadian Institute for Cybersecurity
Uiniversity of New Brunswick

29th August 2019

Agenda

- SIMON lightweight block ciphers
- Design of SIMON ciphers
- Existing security analysis of SIMON ciphers
- ADFA on SIMON ciphers in the bit-flip model
- Algebraic Differential Fault Analysis Attacks (ADFA)
- ADFA based on Differential trail
- ADFA based on simplified Gröbner basis
- ADFA based on SAT solvers

SIMON Lightweight Block Ciphers

- NSA (National Security Agency), U.S. introduced two families of lightweight block ciphers in June 2013
- SIMON has been optimized for performance in Hardware implementations and
- SPECK has been optimized for Software implementations
- Standardized by ISO as part of the RFID air interface standard, namely, ISO/29167-21, in 2018

SIMON Lightweight Block Ciphers

Based on a typical Feistel design, each round consists of three simple bitwise operations: "AND", "XOR" and "rotation"

$$
\begin{aligned}
& X^{i+1}=F\left(X^{i}\right) \oplus Y^{i} \oplus K^{i} \\
& Y^{i+1}=X^{i},
\end{aligned}
$$

where

$$
F\left(X^{i}\right)=\left(S^{1}\left(X^{i}\right) \& S^{8}\left(X^{i}\right)\right) \oplus S^{2}\left(X^{i}\right)
$$

SIMON Lightweight Block Ciphers

Members of the SIMON family

Cipher	Block size $2 n$	Key words m	Key size $m n$	Rounds T
SIMON-32/64	32	4	64	32
SIMON-48/72	48	3	72	36
SIMON-48/96	48	4	96	36
SIMON-64/96	64	3	96	42
SIMON-64/128	64	4	128	44
SIMON-96/96	96	2	96	52
SIMON-96/144	96	3	144	54
SIMON-128/128	128	2	128	68
SIMON-128/196	128	3	196	69
SIMON-128/256	128	4	256	72

A brief summary of attacks against SIMON Ciphers

There have been more than 70 security analysis papers on SIMON by 2018

- Statistics-based attacks: Differential and Linear cryptanalysis
- require a large amount of data
- Algebraic attack
- deterministic, i.e., it doesn't depend on any statistical property
- requires just a couple of pair plainttexts/ciphertexts
- complexity heavily depends on the complexity of algebraic solving techniques
- Implementation attacks
- Side-channel analysis
- Fault analysis

Algebraic Differential Fault Attacks on SIMON ciphers

Algebraic Differential Fault attacks

Inject a fault at intermediate input of an $r^{t h}$-round cipher

In bit-flip fault model, (only) one bit will be flipped when a fault injected

- Let x_{ℓ}^{r} denote the value of the bit before it is flipped, so $\bar{x}_{j}^{r}=x_{j}^{r}+1$, where $j=\ell$ and $\bar{x}_{j}^{r}=x_{j}^{r}$ for everywhere else.
- Let input difference $\delta_{j}^{r}=\bar{x}_{j}^{r}+x_{j}^{r}$, so $\delta_{\ell}^{r}=1$, and $\delta_{j}^{r}=0$ for $j \neq \ell$
- Each bit flipped will affect to 3 input bits in the next round

Algebraic Fault Attacks against SIMON ciphers

Lemma

Let $\delta_{j}^{i}=x_{j}^{i}+x_{j}^{i}$ for $r \leq i \leq T$ be the differential representation of two correct and faulty bits x_{j}^{i} and $x_{j}^{\prime i}$. We have, $\delta_{j}^{r}=0$ for $j \neq l$ and equal to 1 if $j=l$, and:

$$
\begin{equation*}
\delta_{j}^{i+1}=\delta_{j-1}^{i} x_{j-8}^{i}+\delta_{j-8}^{i} x_{j-1}^{i}+\delta_{j-1}^{i} \delta_{j-8}^{i}+\delta_{j-2}^{i}+\delta_{j}^{i-1} \tag{1}
\end{equation*}
$$

We have:

$$
\begin{aligned}
& x_{j}^{i+1}=x_{j-1}^{i} x_{j-8}^{i}+x_{j-2}^{i}+y_{j}^{i}+k_{j}^{i}, \text { and } \\
& \bar{x}_{j}^{i+1}=\bar{x}_{j-1}^{i} \bar{x}_{j-8}^{i}+\bar{x}_{j-2}^{i}+\bar{y}_{j}^{i}+k_{j}^{i}
\end{aligned}
$$

Summing up the two equations:

$$
\begin{aligned}
\delta_{j}^{i+1} & =x_{j-1}^{i} x_{j-8}^{i}+\bar{x}_{j-1}^{i} \bar{x}_{j-8}^{i}+\delta_{j-2}^{i}+\delta_{j}^{i-1} \\
& =\delta_{j-1}^{i} x_{j-8}^{i}+\delta_{j-8}^{i} x_{j-1}^{i}+\delta_{j-1}^{i} \delta_{j-8}^{i}+\delta_{j-2}^{i}+\delta_{j}^{i-1}
\end{aligned}
$$

Bit-flip attack at the second last round $(T-2)$
Aim: retrieve the last round key K^{T-1}

$$
\begin{equation*}
K^{T-1}=X^{T-2} \oplus F\left(Y^{T}\right) \oplus X^{T} \tag{2}
\end{equation*}
$$

Bit	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
Δ^{T-3}	0	0	0	0	0	0	0	0
Δ^{T-2}	1	0	0	0	0	0	0	0
Δ^{T-1}	0	0	0	0	0	0	0	0
Δ^{T}	$*$	0	0	0	0	0	$x_{6}^{T-2}+x_{8}^{T-1}$	$*$

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Δ^{T-3}	0	0	0	0	0	0	0	0
Δ^{T-2}	0	0	0	0	0	0	0	0
Δ^{T-1}	x_{6}^{T-2}	0	0	0	0	0	1	x_{8}^{T-2}
Δ^{T}	0	0	0	0	1	$x_{8}^{T-2}+x_{10}^{T-1}$	$*$	0

Conclusion: If the attacker controls the position of faults, she could retrieve the last round key with $n / 2$ faults.

Bit-flip attack at the third last round $(T-3)$
Aim: retrieve the last two round keys K^{T-1} and K^{T-2}

Bit	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
Δ^{T-4}	0	0	0	0	0	0	0	0
Δ^{T-3}	1	0	0	0	0	0	0	0
Δ^{T-2}	0	0	0	0	0	0	0	0
Δ^{T-1}	$x_{6}^{T-3} x_{14}^{T-2}+$	0	0	0	0	0	$x_{6}^{T-3}+x_{8}^{T-2}$	$x_{6}^{T-3} x_{0}^{T-2}+$
	1							$x_{8}^{T-3} x_{7}^{T-2}+$
								$x_{6}^{T-3} x_{8}^{T-3}$

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Δ^{T-4}	0	0	0	0	0	0	0	0
Δ^{T-3}	0	0	0	0	0	0	0	0
Δ^{T-2}	x_{6}^{T-3}	0	0	0	0	0	1	x_{8}^{T-3}
Δ^{T-1}	0	0	0	0	1	$x_{8}^{T-3}+x_{10}^{T-2}$	$x_{8}^{T-3} x_{9}^{T-2}$	0
Δ^{T}	$*$	0	1	$*$	$*$	$*$	$*$	$*$

Attacker can retrieve 3.5 bits X^{T-2} and 2 bits X^{T-3} with 1 fault Conclusion: If the attacker controls the position of faults, she could retrieve the last two round key with $n / 2$ faults.

Recover the master key

- Ciphers with key words $m=2$ require two round keys to recover the master key, so the attack at the third last round $T-3$ could be used
- Likewise, ciphers with key words $m=3$ and 4 require 3 (resp. 4) round keys to recover the master key
- To get more round keys, attacker will inject faults in an earlier round, e.g., at the round $T-5$ to get 4 round keys

Differential Trail Table

Bit	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
Δ^{T-6}	0	0	0	0	0	0	0	0
Δ^{T-5}	1	0	0	0	0	0	0	0
Δ^{T-4}	0	0	0	0	0	0	0	0
Δ^{T-3}	$*$	0	0	0	0	0	$x_{6}^{T-5}+x_{8}^{T-4}$	$*$
Δ^{T-2}	0	0	0	0	x_{6}^{T-5} $x_{8}^{T-4}+x_{10}^{T-3}$	$*$	$*$	0
Δ^{T-1}	$*$	0	$x_{6}^{T-5}+x_{8}^{T-4}+$ $x_{10}^{T-3}+x_{12}^{T-2}$	$*$	$*$	$*$	$*$	$*$
Δ^{T}	Known values							

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Δ^{T-6}	0	0	0	0	0	0	0	0
Δ^{T-5}	0	0	0	0	0	0	0	0
Δ^{T-4}	x_{6}^{T-5}	0	0	0	0	0	1	x_{8}^{T-5}
Δ^{T-3}	0	0	0	0	1	$x_{8}^{T-5}+x_{10}^{T-4}$	$*$	0
Δ^{T-2}	$*$	0	1	x_{8}^{T-5} $x_{10}^{T-4}+x_{12}^{T-3}$	$*$	$*$	$*$	$*$
Δ^{T-1}	1	$x_{8}^{T-5}+x_{10}^{T-4}+$ $x_{12}^{T-3}+x_{14}^{T-2}$	$*$	$*$	$*$	$*$	$*$	0
Δ^{T}	Known values							

Bit flip attack using simplified Gröbner basis

- Choose one pair of plaintext/ciphertext
- Perform t bit flips at round $r-6$.
- This gives $t+1$ different plaintext/ciphertext pairs.
- Form the equations together with the linear equations for the bit flips.
- Perform ElimLin until no more linear equation can be found.
- Extract out all the equations involving the key bits. Let S denote this set of equations.
- Let $S^{*}=S \cup\left\{k_{i} f: f \in S, k_{i}\right.$ is a key variable $\}$. Perform Gaussian elimination and extract out all the equations with degree ≤ 2. Continue the process until all the key variables are found.

Our experimental results

We carried out the above attack on 3 versions of SIMON

Cipher	Round	Total no of key variables	No of faults	Average No of key variables found	Timing (s)
SIMON-32/64	$T-5$	512	4	508.38	2.6
SIMON-32/64	$T-5$	512	5	511.46	0.7
SIMON-32/64	$T-6$	512	3	511.8	35.3
SIMON-32/64	$T-6$	512	4	511.9	2
SIMON-48/72	$T-6$	864	4	864	26
SIMON-48/72	$T-6$	864	5	864	8.5
SIMON-48/96	$T-6$	864	4	864	5.3
SIMON-48/96	$T-6$	864	5	864	4.1
SIMON-64/128	$T-6$	1048	5	1046	34.3
SIMON-64/128	$T-7$	1048	5	1048	28.8

Bit-flip attacks using SAT solvers

- Randomly select a plaintext/ciphertext pair
- Fix a round $r_{0}<T$.
- For each $i=0$ to $t-1$, flip bit i at round r_{0} and obtain the corresponding faulty ciphertext. We therefore have 1 actual ciphertext and t faulty ciphertexts.
- Decrypt the faulty ciphertexts to find the corresponding plaintexts.
- Write down the equations for the $t+1$ plaintext/ciphertext pairs together with the linear relations representing the bit flips.
- Solve the system using the SAT solver

Our experimental results

Table: Number of instances solved out of 50 in 10 minutes and corresponding executed timings.

Cipher	No of faults	No of key bits fixed	Instances solved	Timing (s)
SIMON-32/64	1	18	34	99.1
SIMON-32/64	1	20	42	69.4
SIMON-32/64	1	22	46	47.4
SIMON-48/72	1	22	36	41.2
SIMON-48/72	1	24	42	31.9
SIMON-48/72	1	26	45	37
SIMON-48/96	1	40	22	77.1
SIMON-48/96	1	42	30	103.7
SIMON-48/96	1	44	34	72.4

Thank you for listening!

Questions

