Algebraic Differential Fault Attacks on SIMON Lightweight Block Ciphers

Le Duc Phong

Canadian Institute for Cybersecurity Uiniversity of New Brunswick

29th August 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Agenda

- SIMON lightweight block ciphers
 - Design of SIMON ciphers
 - Existing security analysis of SIMON ciphers
- ADFA on SIMON ciphers in the bit-flip model
 - Algebraic Differential Fault Analysis Attacks (ADFA)

- ADFA based on Differential trail
- ADFA based on simplified Gröbner basis
- ADFA based on SAT solvers

SIMON Lightweight Block Ciphers

- NSA (National Security Agency), U.S. introduced two families of lightweight block ciphers in June 2013
 - SIMON has been optimized for performance in Hardware implementations and
 - SPECK has been optimized for Software implementations

• Standardized by ISO as part of the RFID air interface standard, namely, ISO/29167-21, in 2018

SIMON Lightweight Block Ciphers

Based on a typical Feistel design, each round consists of three simple bitwise operations: "AND", "XOR" and "rotation"

$$\begin{split} X^{i+1} &= F(X^i) \oplus Y^i \oplus K^i \\ Y^{i+1} &= X^i, \end{split}$$

where

 $F(X^{i}) = (S^{1}(X^{i}) \& S^{8}(X^{i})) \oplus S^{2}(X^{i})$

SIMON Lightweight Block Ciphers

Members of the SIMON family

Ciphor	Block size	Key words	Key size	Rounds	
Orpher	2n	m	mn	T	
SIMON-32/64	32	4	64	32	
SIMON-48/72	48	3	72	36	
SIMON-48/96	48	4	96	36	
SIMON-64/96	64	3	96	42	
SIMON-64/128	64	4	128	44	
SIMON-96/96	96	2	96	52	
SIMON-96/144	96	3	144	54	
SIMON-128/128	128	2	128	68	
SIMON-128/196	128	3	196	69	
SIMON-128/256	128	4	256	72	

A brief summary of attacks against SIMON Ciphers

There have been more than 70 security analysis papers on SIMON by 2018

- Statistics-based attacks: Differential and Linear cryptanalysis
 - require a large amount of data
- Algebraic attack
 - deterministic, i.e., it doesn't depend on any statistical property

- requires just a couple of pair plainttexts/ciphertexts
- complexity heavily depends on the complexity of algebraic solving techniques
- Implementation attacks
 - Side-channel analysis
 - Fault analysis

Algebraic Differential Fault Attacks on SIMON ciphers

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うらの

Algebraic Differential Fault attacks

Inject a fault at intermediate input of an r^{th} -round cipher

In bit-flip fault model, (only) one bit will be flipped when a fault injected

- Let x_{ℓ}^r denote the value of the bit before it is flipped, so $\bar{x}_j^r = x_j^r + 1$, where $j = \ell$ and $\bar{x}_j^r = x_j^r$ for everywhere else.
- Let input difference $\delta_j^r = \bar{x}_j^r + x_j^r$, so $\delta_\ell^r = 1$, and $\delta_j^r = 0$ for $j \neq \ell$
- Each bit flipped will affect to 3 input bits in the next round

・ロト ・四ト ・ヨト ・ヨト

Algebraic Fault Attacks against SIMON ciphers

Lemma

Let $\delta_j^i = x_j^i + x_j'^i$ for $r \leq i \leq T$ be the differential representation of two correct and faulty bits x_j^i and $x_j'^i$. We have, $\delta_j^r = 0$ for $j \neq l$ and equal to 1 if j = l, and:

$$\delta_j^{i+1} = \delta_{j-1}^i x_{j-8}^i + \delta_{j-8}^i x_{j-1}^i + \delta_{j-1}^i \delta_{j-8}^i + \delta_{j-2}^i + \delta_j^{i-1} \tag{1}$$

We have:

$$\begin{split} x_j^{i+1} &= x_{j-1}^i x_{j-8}^i + x_{j-2}^i + y_j^i + k_j^i, \text{ and } \\ \bar{x}_j^{i+1} &= \bar{x}_{j-1}^i \bar{x}_{j-8}^i + \bar{x}_{j-2}^i + \bar{y}_j^i + k_j^i \end{split}$$

Summing up the two equations:

$$\begin{split} \delta_{j}^{i+1} =& x_{j-1}^{i} x_{j-8}^{i} + \bar{x}_{j-1}^{i} \bar{x}_{j-8}^{i} + \delta_{j-2}^{i} + \delta_{j}^{i-1} \\ =& \delta_{j-1}^{i} x_{j-8}^{i} + \delta_{j-8}^{i} x_{j-1}^{i} + \delta_{j-1}^{i} \delta_{j-8}^{i} + \delta_{j-2}^{i} + \delta_{j}^{i-1} . \end{split}$$

Bit-flip attack at the second last round (T-2)

Aim: retrieve the last round key K^{T-1}

$$K^{T-1} = X^{T-2} \oplus F(Y^T) \oplus X^T$$
(2)

\mathbf{Bit}	15	14	13	12	1	1	10	ę)		8
Δ^{T-3}	0	0	0	0	0		0	()		0
Δ^{T-2}	1	0	0	0	0)	0	()		0
Δ^{T-1}	0	0	0	0	0	(0	0			0
Δ^T	*	0	0	0	0)	0	x_6^{T-2} -	$+x_8^T$	-1	*
Bit	7	6	5	4	3		2	2	1		0
Δ^{T-3}	0	0	0	0	0		()	0		0
Δ^{T-2}	0	0	0	0	0		()	0		0
Δ^{T-1}	x_{6}^{T-1}	2 0	0	0	0		()	1	x_8^T	$^{-2}$
Δ^T	0	0	0	0	1	x	$\frac{T-2}{8}$ +	$-x_{10}^{T-1}$	*		0

<u>Conclusion</u>: If the attacker controls the position of faults, she could retrieve the last round key with n/2 faults.

Bit-flip attack at the third last round (T-3)

Aim: retrieve the last two round keys K^{T-1} and K^{T-2}

E	Bit	15	5		14	13	12	11	10		9	8	
Δ^{2}	$\Gamma - 4$	0			0	0	0	0	0	0		0	
Δ^{2}	$\Gamma = 3$	1			0	0	0	0	0		0	0	
Δ^{2}	$\Gamma - 2$	0			0	0	0	0	0		0	0	
Δ^{2}	T - 1	x_6^7	$x_{14}^{T-3}x_{14}^{T-2}$	+	0	0	0	0	0	x_{e}^{2}	$x_{5}^{T-3} + x_{8}^{T-2}$	$x_6^{T-3}x_0^T$	$^{-2}$ +
		1										$x_8^{T-3}x_7^{T}$	$^{-2}$ +
												$x_{6}^{T-3}x_{8}^{T}$	-3
Δ	Δ^T	0			0	0	0	*	*		*	0	
ſ	Bi	t	7	6	5	4	3		2		1	0	
ſ	Δ^{T}	-4	0	0	0	0	0		0		0	0	
ſ	Δ^{T}	-3	0	0	0	0	0		0		0	0	
ſ	Δ^{T}	-2	x_{6}^{T-3}	0	0	0	0		0		1	x_8^{T-3}	
ĺ	Δ^{T}	-1	0	0	0	0	1	x_8^{T-3}	$+x_{10}^{T-}$	-2	$x_8^{T-3}x_9^{T-2}$	0	
ſ	Δ^{T}		*	0	1	*	*		*		*	*	

Attacker can retrieve 3.5 bits X^{T-2} and 2 bits X^{T-3} with 1 fault <u>Conclusion</u>: If the attacker controls the position of faults, she could retrieve the last two round key with n/2 faults.

Recover the master key

- Ciphers with key words m = 2 require two round keys to recover the master key, so the attack at the third last round T-3 could be used
- Likewise, ciphers with key words m = 3 and 4 require 3 (resp. 4) round keys to recover the master key
- To get more round keys, attacker will inject faults in an earlier round, e.g., at the round T-5 to get 4 round keys

Differential Trail Table

\mathbf{Bit}	15	14	13	12	11	10	9	8		
Δ^{T-6}	0	0	0	0	0	0	0	0		
Δ^{T-5}	1	0	0	0	0	0	0	0		
Δ^{T-4}	0	0	0	0	0	0	0	0		
Δ^{T-3}	*	0	0	0	0	0	$x_6^{T-5} + x_8^{T-4}$	*		
Δ^{T-2}	0	0	0	0	x_6^{T-5} +	*	*	0		
					$x_8^{T-4} + x_{10}^{T-3}$					
Δ^{T-1}	*	0	$x_6^{T-5} + x_8^{T-4} +$	*	*	*	*	*		
			$x_{10}^{T-3} + x_{12}^{T-2}$							
Δ^T	Known values									

Bit	7	6	5	4	3	2	1	0		
Δ^{T-6}	0	0	0	0	0	0	0	0		
Δ^{T-5}	0	0	0	0	0	0	0	0		
Δ^{T-4}	x_{6}^{T-5}	0	0	0	0	0	1	x_8^{T-5}		
Δ^{T-3}	0	0	0	0	1	$x_8^{T-5} + x_{10}^{T-4}$	*	0		
Δ^{T-2}	*	0	1	$x_8^{T-5} +$	*	*	*	*		
				$x_{10}^{T-4} + x_{12}^{T-3}$						
Δ^{T-1}	1	$x_8^{T-5} + x_{10}^{T-4} +$	*	*	*	*	*	0		
		$x_{12}^{T-3} + x_{14}^{T-2}$								
Δ^T		Known values								

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Bit flip attack using simplified Gröbner basis

- Choose one pair of plaintext/ciphertext
- Perform t bit flips at round r 6.
- This gives t + 1 different plaintext/ciphertext pairs.
- Form the equations together with the linear equations for the bit flips.
- Perform ElimLin until no more linear equation can be found.
- Extract out all the equations involving the key bits. Let S denote this set of equations.
- Let $S^* = S \cup \{k_i f : f \in S, k_i \text{ is a key variable }\}$. Perform Gaussian elimination and extract out all the equations with degree ≤ 2 . Continue the process until all the key variables are found.

Our experimental results

We carried out the above attack on 3 versions of SIMON

Cimbon	Davad	Total no of	No of	Average No of	Timin n (a)
Cipilei	Round	key variables	faults	key variables found	1 ming (s)
SIMON-32/64	T-5	512	4	508.38	2.6
SIMON-32/64	T - 5	512	5	511.46	0.7
SIMON-32/64	T - 6	512	3	511.8	35.3
SIMON-32/64	T - 6	512	4	511.9	2
SIMON-48/72	T - 6	864	4	864	26
SIMON-48/72	T - 6	864	5	864	8.5
SIMON-48/96	T - 6	864	4	864	5.3
SIMON-48/96	T - 6	864	5	864	4.1
SIMON-64/128	T - 6	1048	5	1046	34.3
SIMON-64/128	T-7	1048	5	1048	28.8

Bit-flip attacks using SAT solvers

- Randomly select a plaintext/ciphertext pair
- Fix a round $r_0 < T$.
- For each i = 0 to t 1, flip bit i at round r_0 and obtain the corresponding faulty ciphertext. We therefore have 1 actual ciphertext and t faulty ciphertexts.
- Decrypt the faulty ciphertexts to find the corresponding plaintexts.
- Write down the equations for the t + 1 plaintext/ciphertext pairs together with the linear relations representing the bit flips.

イロト イヨト イヨト イヨト 三日

• Solve the system using the SAT solver

Our experimental results

Table: Number of instances solved out of 50 in 10 minutes and corresponding executed timings.

Cipher	No of	No of key	Instances	Timing
	faults	bits fixed	solved	(s)
SIMON-32/64	1	18	34	99.1
SIMON-32/64	1	20	42	69.4
SIMON-32/64	1	22	46	47.4
SIMON-48/72	1	22	36	41.2
SIMON-48/72	1	24	42	31.9
SIMON-48/72	1	26	45	37
SIMON-48/96	1	40	22	77.1
SIMON-48/96	1	42	30	103.7
SIMON-48/96	1	44	34	72.4

Thank you for listening!

Questions